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A variational formulation for three-dimensional waves in a continuously stratified 
shear flow is used to derive the equations governing a resonant triad of waves. It is 
argued that in general, critical layers are necessary for the existence of explosive 
resonant triads. 
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1. Introduction 
In recent years, the interaction of positive and negative (disturbance) energy waves 

has been exploited to explain linear and nonlinear instability mechanisms in stratified 
shear flows (Cairns 1979; Craik & Adam 1979; Tsutahara 1984; Tsutahara & 
Hashimoto 1986; Ostrovskii, Rybak & Tsmring 1986; and Romanova & Shrira 1988). 
In particular, these authors have shown that explosive resonant triad interactions (i.e. 
triads of waves in which the wave of the largest frequency has oppositely signed energy 
to the other two triad members, whence the wave amplitudes develop a singularity in 
a finite time, cf. Craik 1985, 0 15) occur among interfacial waves in layered fluids with 
piecewise-constant or -linear velocity profiles and piecewise-constant or -exponential 
density profiles. Moreover, these explosive instabilities have been shown to occur in 
parametric domains in which the underlying flow can be linearly stable but in which 
any critical-layer singularities (i.e. the singularity that occurs when the phase speed of 
the wave equals the background flow speed) have been suppressed by virtue of the 
layered-fluid model. 

As reported by Maslowe (1985) and Morland, Saffman & Yuen (1991), the stability 
characteristics of broken-line profiles can differ significantly from those of smooth 
profiles ; hence, we consider here resonant triad interactions on smooth basic flow 
profiles. This study also presents a variational formulation suitable for future studies 
of the evolution of nonlinear oblique waves propagating through general curved 
velocity and density profiles. We begin, in $ 2, by developing this variational 
formulation for oblique waves propagating on a horizontal shear flow Uo(z) with 
background density po(z), where z is the coordinate parallel to gravity, in terms of 
Lagrangian coordinates advected with this basic flow. In 93, we derive the average 
Lagrangian for a single wave mode and show that a necessary condition for the 
existence of negative-energy waves is 

(1.1) 
for some z in the flow, where w is the wave frequency and i c  is the horizontal 
wavenumber vector. We emphasize that while the sign of the energy of a single mode 
depends upon the reference frame from which it is viewed, the conditions under which 
an explosive resonant triad exist are Galilean invariant (Davidson 1972). In $4, we 

w(w - K - UO(Z)) < 0 

8-2 
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derive the equations for a resonant triad of waves in a general stratified shear flow and 
argue that at least one triad member must possess a critical layer for an explosive 
instability to occur. As we are interested in background flows that are linearly stable, 
it is likely that inviscid eigensolutions with nonlinear critical layers, which Maslowe 
(1973) has shown to exist when Ri, the local Richardson number, is everywhere greater 
than $ (a necessary condition for linear stability), will be relevant to this instability. 
Thus a numerical and/or analytical study of explosive resonant triads for continuous 
shear flows is in general complicated by the presence of the critical layer, and is under 
consideration. In Appendix A, we show how an interface across which there may be 
a density and velocity discontinuity may be incorporated into the present formulation. 
Hence, our formulation may be applied to flow profiles with general stratification and 
shear between interfaces as well as to continuous profiles. 

In a recent article, Zhang (1991) has shown by direct computation for a particular 
Lagrangian and the fourth-order average Lagrangian is independent of the third-order 
trial function. In Appendix B, we present a general proof that the error in the average 
Lagrangian is the order of the square of the error of the trial function, which is 
relevant to our calculation in $4. 

2. Lagrangian formulation 
The motion of an inviscid, incompressible, stably stratified fluid is governed by 

where 

DP V’ .u  = 0, - = o  Dt ’ 
~a _ -  = -+u.V’. 
D t  at 

(2.2a, b) 

Here x’ = (x’, y’, z’) are the Eulerian Cartesian coordinates (2’ is the vertical coordinate 
and k is a unit vector in the vertical direction), V‘ = (a/ax’, a/ay’, a/az’), u = (u, v, w) 
are the velocity components, p is the pressure and t is the time. The non-dimensional 
variables in (2.1)-(2.3) are related to the dimensional variables (indicated by hats) 
according to 

t“ = NTlt ,  2’ = Lx’, li = Nl Lu, /3 = p l p ,  3 = p,gLp, (2.4a-e) 
where Nl is a typical value of the Brunt-Vaisala frequency, L is a typical lengthscale 
(either wavelength or an appropriate vertical lengthscale), p 1  is a typical value of the 
density, and the parameter P = N,” L / g  in (2.1) is small in the Boussinesq 
approximation. 

We consider a basic state consisting of a horizontal shear flow U, = ( Uo(z), K(z ) ,  0) 
and background density field po(z) bounded by rigid planes at z = &d and define 
particle displacements 5 = ( t , q ,  8 so that the Eulerian coordinates x‘ are related to the 
Lagrangian coordinates x advected with this basic flow according to 

(2.5) 
Since the density is a material property in a non-diffusive, incompressible fluid, the 
Jacobian of the transformation from x to x’ is equal to 1 : 

x’ = x + C(x, t). 

J r d e t  - = 1, (E) (2.6a) 
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(2.6b) 

where V is the gradient operator in terms of the Lagrangian variables. The total time 
derivative (2.3) is given by 

(2.7) 
whence (2.1) is transformed to 

~a - _  - -+ uo.v, 
Dt at 

~ 2 6 ~  +--(K. 1 a )+"& P = 0, 
P o w  paxi zip p 

where latin indices take the values 1,2, or 3, repeated indices are summed over and Ktj 
is the i,jth co-factor of J that satisfies 

or 

(2 .9~)  

(2.9b) 

In (2.9), aij is the Kronecker delta function and eij& is the usual permutation symbol. 
It also is useful to note that i3Kij/axi = 0. We remark that the advective nonlinearity 
of (2.1) now appears in the pressure term of (2.8). 

We next define a pressure perturbation q(x, t )  according to 

Substituting (2.10) into (2.8), we obtain 

(2.10a, b) 

(2.1 1) 

Equations (2 .6~)  and (2.11) provide four equations in the four unknowns 5 and q. 
These equations may be deduced from the variational principle 

(2.12) 

where A is the action integral of the Lagrangian, 

Independent variations Sq give (2 .6~)  and S< give (2.11) and the boundary conditions 
C = O  (2 = + d ) .  (2.14) 

3. Single-mode average Lagrangian 

the basic state described in 92. To this end, we pose an expansion of the form 
We compute the average Lagrangian for a single modulated wave superimposed on 

(3.1~)  

(3.lb) 

5 = a Re [&, 7) $(z)  eiq + O(a2, a€), 

(ik, il, po 4') A- ') " ei*] + 0(a2, a€), 
K~ dz 
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where A is a slowly varying complex envelope, 
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x 3 &y),  7 = € t ,  (3.2a, b) 
are slow horizontal space and time scales, 

e = ~ y K . x - - 0 7 ) ,  K = (k,i), K = 1x1, (3.3 a-c) 

a and e are small parameters, and $(z) is the vertical modal structure of the wave and 
satisfies 

subject to 
where 
is the intrinsic frequency and 

$ = O  ( ~ = + d ) ,  
d(z) = w - K * UO(Z) 

(3.5) 
( 3 . 6 ~ )  

(3.6b) 

is the non-dimensional Brun-Vaisala frequency. We remark that (3.4) may be 
transformed to the Taylor-Goldstein equation (with non-Boussinesq terms) by 
invoking $(z) = i@(z)/d(z) where the vertical velocity is given by w = Re [A@(z) eiq. 
As we are interested in examining flows that are linearly stable, we henceforth assume 
that d and $ are real-valued. 

Substituting (3.1) into (2.13) and averaging over a 27t interval of 0 (this average is 
denoted by ( )), we obtain 

<L)  = a2g + a2sd/: + a3g + O(a4, a3e, a2e2), (3.7) 
where = D(w,rc)a2, A = aei@ (3.8 a, b) 

and D(u,K) = - po[d2qY2 + ~ ~ ( 4 ~  - N 2 )  $2] dz. 
4 K 2  -d 

(3.8 c) 

At O(a2), independent variations of ( L )  with respect to a yield the dispersion 
relationship D(o, K) = 0. (It is straightforward to show directly from (3.4) that D = 0.) 
In Appendix A, we show how an interface across which there may be a density or 
velocity discontinuity may be incorporated into (3.8 c). 

Proceeding to O(a2e), we find 

d/: = - +i[D,(AAr - AA,) - D, * ( A  3, - AA,)] = ( - D, $r + D, * @,) a2, (3.9) 
where the subscripts 7, K and x indicate partial differentiation and the overbar indicates 
complex conjugation. Independent variations with respect to a and @ yield the familiar 
results that in the linear approximation the envelope of the wave moves with the group 
velocity and that the wave action is conserved, respectively. In the present, single-mode 
approximation, = 0. 

The pseudoenergy of the wave, which is a measure of the energy of the disturbance, 
is given by (cf. Grimshaw 1984) 

Substituting (2.13) and (3.1) into (3.10a), we find 
E = u2wD,aa + O(a3, ae2), 

( 3 . 1 0 ~ )  

(3.10b) 
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where WD, = -- po d($'2 + K'$') dz; 
2 K 2  -d 

( 3 . 1 0 ~ )  

hence, a necessary condition for the pseudoenergy to be negative is that 6~4 < 0 (i.e. 
(1.1)) somewhere in the flow. 

4. Triad equations 

conditions 

and choose an expansion of the form 

We next consider the interaction of a triad of waves that satisfy the resonance 

K l + K , + K 3  = 0, W l + W 2 + W 3  = 0,  (4.1 a, b) 

1 3 

6 = a Re [ A ( r ) ( ~ ,  7) $ r ( ~ )  ei'r + O(a2, C I E ) ,  
9-1 

(4.2a) 

where dr E Wr-Kr- uo, (4.2~) 
A(+) is the slowly varying complex envelope of the rth wave and the subscript r 
designates the triad member. We emphasize that only the leading-order approximations 
to 5 and q are necessary in the derivation of the triad equations even though at O(a2), 
5 and q have terms proportional to ei('m+'*) (n, m = 1,2,3, m + n) which through the 
interaction with the O(a) approximation to 5 and q proportional to eior(r + m $. n) 
appear to give an @a3) contribution to ( L ) .  That the third-order average Lagrangian 
is independent of the second-order trial functions for resonant triad interactions 
among capillary-gravity waves was shown by direct computation by Simmons (1969). 
Here, in Appendix B, we present a general proof showing that the error in the average 
Lagrangian is of the order of the square of the error in the trial function. While this 
proof follows from first principles and is not surprising (indeed, it has been implicitly 
invoked by many authors), it appears worthwhile to present since it does not appear 
to be universally appreciated. For example, Zhang (1991) has shown by direct 
computation that the fourth-order Lagrangian for short surface waves riding on long 
waves is independent of the third-order trial function. 

We next substitute (4.2) into (2.13) and average over 8 to obtain 
3 3 

( L )  = a2 c 9 p  + a% c 9 p  + a3y(A(')A(2)A(3) + A(l)A(W3)) + O(a4, a3€, &2), 

r=1 r= 1 

(4.3) 
where 9r) and 9:) are given by ( 3 . 8 ~ )  and (3.9) for the rth wave and 
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A method in which an interface may be incorporated into (4.4) is presented in 
Appendix A. 

We now assume e = a to balance nonlinearity and modulation and invoke 
Hamilton's principle for the Lagrangian (4.3) to obtain at O(a2) that each wave satisfies 
the dispersion relationship 

and to obtain at O ( d )  the triad equations 
D(wr, K,)  = 0 ( r  = 1,2,3), (4.5) 

where 

( 4 . 6 ~ )  

(4.6b) 

(4.6 c) 

(4.7) 

is the group velocity of the rth wave. We remark that (4.5)-(4.7) are valid for contained 
triads (i.e. the energy of the waves remains finite) as well as explosive triads. We also 
emphasize that the required symmetry in (4.6) follows directly from the variational 
approach. Equations (4.6) possess conservation laws for wave action 

IA(l)I2 = D w ( ~ 2 , ~ 2 )  

(4.8) 

and pseudoenergy 

or (4.9 b) 

where E(') is the pseudoenergy of the rth wave (see (3.10b)). 
purely a function of r, (4.6) have been shown to admit explosive solutions 

(wherein the amplitudes of all triad members develop a singularity in a finite time) 
when the wave of largest frequency in absolute value has oppositely signed energy to 
the other two waves (cf. Craik 1985, $15 and (4.1), (4.8), (4.9)). For the partial 
differential equation (4.6), explosive solutions occur when the wave of highest 
frequency in absolute value has oppositely signed energy and travels with the middle 
group velocity (Kaup, Reiman & Bers 1979). These conditions for 'explosions' are 
Galilean invariant; hence, we argue that critical layers are necessary for the occurrence 
of explosive triads in continuously stratified shear flows. For while it is possible to 
choose a particular reference frame, defined so that 0 < oman < om,,, where f iminlmas 

For 
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are the projections of the minimum and maximum speeds of the shear profile in the 
direction of the wavenumber vector IC, in which waves of positive and negative 
pseudoenergy coexist without critical layers, a Galilean transformation to a reference 
frame for which Gmin < 0 < fim,,, ensures that all waves without critical layers have 
positive energy. Hence, for waves of oppositely signed pseudoenergy to persist in all 
reference frames (a necessary condition for the occurrence of explosive triads), at least 
one triad member must possess a critical layer. Then, in contrast to the layered-flow 
models, this critical-layer singularity must be resolved with either viscosity or 
nonlinearity. As viscosity may destabilize negative energy waves (cf. Ostrovskii et al. 
1986), we anticipate that nonlinear critical layers will be relevant to this instability. It 
appears that a numerical study is necessary to determine whether explosive resonant 
triads exist in parametric domains for which the basic flow is linearly stable; however, 
this numerical study presents difficulties owing to the singularity at the critical layer 
and currently is under consideration. 

J. M. B. is grateful to V. Shrira for a helpful discussion, and was supported by a grant 
from the Australian Research Council and by a National Science Foundation 
Mathematical Sciences Postdoctoral Research Fellowship. 

Appendix A. Layered models 
To compare the present results ( 3 . 8 ~ )  and (4.4) to those obtained for the layered 

models referred to in Q 1, we introduce an interface at z = zo across which there may be 
discontinuities in po(z) and Uo(z). To determine the modifications to our theory caused 
by this interface, we replace this interface with a thin layer in which 

(A la, b) 
Z=(z-z,) /d (-1 < Z d  l), (A 1 4  

4(4 = @a + + O ( 4 ,  (A 2) 

po = p0(Z) ,  4 = 4(Z) = W - I C .  U0(Z), 

and consider the limit A + 0. We expand the vertical modal structure of the wave (cf. 
(3.1 a))  according to 

substitute into (3.4) and invoke (3.6b) to obtain 

where, here and throughout this section, - implies an approximation with an error of 
O(d). A first integral of (A 3) is 

where 

and P; = PO(* 1). (A 44 

MI? = 0, and r$ d.] - = [pol+ $/By (A 5a, b) 

It follows that, as A + 0, 
- 2  + 

where [ 3' denotes the jump across the interface z = zo, in standard notation. 
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To determine the effect of an interface on the dispersion relationship, we substitute 

(A 6 )  

(A 2) into ( 3 . 8 ~ )  and invoke (A 1) to obtain 

D(o,  rc> - D,, + DLz + D,, 

where D,, = lim {& l + A p o [ & 2 $ r z  + ~ ~ ( 4 '  - N 2 )  $21 dz 
A+O 

DL2 is given by (A 7a) with the range of integration replaced by -d  < z < z,-d and 

As A + 0 we find that (3.8 c) is replaced by 

1 1 
D(o, K) = rd po[92qY2 + ~ ~ ( 4 ~  - N 2 )  $7 dz +- bo 4":. 

4/3 
For more than one interface, the last term is replaced by a sum of terms, one for each 
interface. For example, for a three-layer fluid (with two interfaces) in which the density 
po(z) and the velocity Uo(z) are constant in each layer, (3.8a) is replaced by 

q, = D ,  A ,  Z+ + D- A- A- + D+(A+ - 2- +A+ A) ,  (A 9) 

where A +  are the amplitudes of the waves on the upper/lower interface and D ,  = 0 is 
the dispersion relationship for waves on the upper interface if the lower interface is 
replaced by a rigid boundary and similarly for D- = 0 (cf. Craik & Adams 1979). 
Invoking Hamilton's principle for (A 7), we obtain 

and 

2 0 ,  A+ + D ,  A- = 0, 
2 0 -  A- + D ,  A+ = 0. 

(A 10a) 

(A 10 b) 

The dispersion relationship then is obtained by eliminating A- from (A 10a, b) which 
yields the three-layer counterpart of (3.8 c ) :  

D(w,IE) = - 4 D + + D ~ / D - .  - (A 1Oc) 

We next consider the effect of an interface on the nonlinear interaction coefficient 
(4.4). Substituting (A 2 )  into (4.4) and invoking (A l), we obtain 

Y - lim { Y L ~  + Y L J  + Yr,  
A+O 

where yLIIL2 is given by (4.4) with the integration limits replaced by 

respectively and 
(zO + '7 d ) / (  - d 9  z O - d )  
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where @jro ( r  = 1,2,3) is Go, (A 2), for the rth wave. The generalization of this 
interaction coefficient for a three-layer flow is similar to that described above for the 
dispersion relationship (A 6) and is left to the reader. 

For the particular (two-dimensional) two-layer flow considered in Tsutahara & 
Hashimoto (1986), for which 

( P O ( 4 ’  UO(Z)) = (PI? u,a) ( A  > > 0O), (A 13a) 

and (A 13b) 
where f is a unit vector in the x-direction, we compute the dispersion relationship (A 6) 
and the nonlinear interaction coefficient (A 11).  The vertical modal structure of the rth 
(r  = 1,2,3) wave superposed on the flow (A 13) is 

$,(z) = ( A  < z < co) (A 14a) 
and $,(z) = @jr0 e‘+* (- 00 < z < - A ) .  (A 14b) 

Substituting (A 13)-(A 14) into (A 7), we find 

(PO(Z>, UO(ZN = ( P 2 9  u 2  4 (- co < z < - 4, 

and 

(A 15a, b) 

(A 15c) 

Invoking (A 6), we recover Tsutahara & Hashimoto’s (1) in the limit of zero surface 
tension. 

We next compute (A 11)  for a triad of waves that satisfy the resonance conditions 
(4.1) where we assume without loss of generality that k, < 0 and k2, k3 > 0. Substituting 
(A 13)-(A 14) into (A 11)-(A 12), we obtain 

lim {YLI  + Y L 2 )  = % P 0 ( 9 2  KQIKZ + 9 3  K 2 l 4 l ’  (A 16a) 
A+O 

and Yr = - f [ P 0 ( 9 2  K3/K2 -I- 9 3  K2 /K3)  -Po(Gjz &)IT -;(Pi -Pz) “$1 $ 2  $3>’I+. (A 16b) 
Invoking (A 11) and noting that the last term in (A 16b) is zero for the two-layer flow, 
we obtain 

which agrees with Tsutahara & Hasimoto’s result (8) in the limit of zero surface 
tension. 

r = ”  4 P o  G & ] +  2 3 -  (A 17) 

Appendix B 
We consider the Lagrangian as a function of the vector trial function q and its 

derivatives 
(B 1) 

where subscripts indicate partial differentiation and bold subscripts represent the 
gradient operator. In (2.13), q = (e, 7, [, 4). We expand the trial function q in the small 
parameter E according to 

(B 2) 

L = L(q, 46, qx, x, 4, 

4 = 40 + € 4 1  + O(e2), 

which implies 
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We next expand the Lagrangian about q = qo: 
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Defining the average Lagrangian (L) 
1 rzn 

substituting (B 4) into (B 5) ,  invoking 

and integrating the third and fourth terms on the right-hand side by parts, we obtain 

Invoking (B 3) for the term in square brackets in (B 7) ,  we find that the O(c) error in 
approximating q by qo in (B 5 )  leads to an error of O(2)  in (L) .  
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